Designing high-speed, low-power full adder cells based on carbon nanotube technology
نویسندگان
چکیده
This article presents novel high speed and low power full adder cells based on carbon nanotube field effect transistor (CNFET). Four full adder cells are proposed in this article. First one (named CN9P4G) and second one (CN9P8GBUFF) utilizes 13 and 17 CNFETs respectively. Third design that we named CN10PFS uses only 10 transistors and is full swing. Finally, CN8P10G uses 18 transistors and divided into two modules, causing Sum and Cout signals are produced in a parallel manner. All inputs have been used straight, without inverting. These designs also used the special feature of CNFET that is controlling the threshold voltage by adjusting the diameters of CNFETs to achieve the best performance and right voltage levels. All simulation performed using Synopsys HSPICE software and the proposed designs are compared to other classical and modern CMOS and CNFET-based full adder cells in terms of delay, power consumption and power delay product.
منابع مشابه
Symmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)
Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...
متن کاملA High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube FET technology for use in arithmetic units
In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...
متن کاملA Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units
In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...
متن کاملTwo novel low-power and high-speed dynamic carbon nanotube full-adder cells
In this paper, two novel low-power and high-speed carbon nanotube full-adder cells in dynamic logic style are presented. Carbon nanotube field-effect transistors (CNFETs) are efficient in designing a high performance circuit. To design our full-adder cells, CNFETs with three different threshold voltages (low threshold, normal threshold, and high threshold) are used. First design generates SUM a...
متن کاملReducing Hardware Complexity of Wallace Multiplier Using High Order Compressors Based on CNTFET
Multiplier is one of the important components in many systems such as digital filters, digital processors and data encryption. Improving the speed and area of multipliers have impact on the performance of larger arithmetic circuits that are part of them. Wallace algorithm is one of the most famous architectures that uses a tree of half adders and full adders to increase the speed and red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1411.2212 شماره
صفحات -
تاریخ انتشار 2014